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Abstract
A measure of entanglement with respect to a bipartite partition of n-qubit
has been defined and studied from the viewpoint of Riemannian geometry
(Iwai 2007 J. Phys. A: Math. Theor. 40 12161). This paper has two aims.
One is to study further the geometry of entanglement, and the other is to
investigate Grover’s search algorithms, both the original and the fixed-point
ones, in reference with entanglement. As the distance between the maximally
entangled states and the separable states is known already in the previous paper,
this paper determines the set of maximally entangled states nearest to a typical
separable state which is used as an initial state in Grover’s search algorithms,
and to find geodesic segments which realize the above-mentioned distance.
As for Grover’s algorithms, it is already known that while the initial and the
target states are separable, the algorithms generate sequences of entangled
states. This fact is confirmed also in the entanglement measure proposed in the
previous paper, and then a split Grover algorithm is proposed which generates
sequences of separable states only with respect to the bipartite partition.

PACS numbers: 02.40.Pc, 03.65.−w, 03.67.−a

1. Introduction

A measure of entanglement with respect to a bipartite partition of n-qubit has been defined
and studied from the viewpoint of Riemannian geometry [1, 2]. While there are a number
of candidates for measures of entanglement [3–10], the measure taken up in [2] is of the
form det(I − ρ), where ρ is the reduced density matrix associated with the bipartite partition.
This paper studies further the geometry of entanglement and investigates Grover’s search
algorithms in reference with entanglement.

As the distance between the maximally entangled states and the separable states is known
already in the previous paper [2], this paper determines the set of maximally entangled states
nearest to the typical separable state which is used as an initial state in Grover’s search
algorithms. Further, a geodesic segment is found, which has the length as large as the distance
mentioned above.
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Grover’s search algorithm generates a sequence of states approaching a target state by
iterative applications of the unitary operators determined in the algorithm. Grover gave two
algorithms, one of which is the original algorithm [11] and the other the fixed-point algorithm
[12]. To observe how the algorithm works, it is of help to measure the entanglement for Grover
sequences. In this paper, a measure proposed in [2] is used to evaluate the entanglement for
the Grover sequences. The measurement shows that though the initial and the target states in
the algorithm are separable, the sequence generated by the algorithms are entangled. In view
of this, a split Grover algorithm, which generates sequences of separable states only, will be
proposed by a slight modification of the Grover algorithm.

This paper is organized as follows: section 2 is a brief review from [2], in which the
sets of separable states and of maximally entangled states are identified, and the distance
between those sets is described. In section 3, maximally entangled states are determined
which are nearest from the state that is posed usually as an initial state in the Grover algorithm.
Section 4 is concerned with ‘horizontal’ paths which join the initial state with maximally
entangled target states. In particular, geodesic segments are found, which are as long as
the distance stated in section 2. Section 5 contains a review of Grover’s algorithms, the
original one and the fixed-point one. In particular, the unitary operators for the fixed-point
algorithm are represented in the matrix form. In section 6, the entanglement measure is
evaluated along the sequence determined by both of the Grover algorithms. In section 7, a
split Grover algorithm is proposed, which brings the initial state into a separable target state
along a sequence of separable states only. Section 8 contains remarks on distances among
states concerned. Further, an extension of the entanglement measure is touched upon.

2. Geometric setting up

This section is a review from [2]. Let H ∼= C
2 be a Hilbert space for one-qubits with

orthonormal basis vectors |0〉, |1〉. The Hilbert space for n-qubits is given by the tensor
product H⊗n. We consider the separability of n-qubits. There are a number of ways to
partition the n-qubit system into subsystems. If an n-qubit state is separable, it is put in the
form of a tensor product of p-qubit state and q-qubit state with p + q = n. Let

P = 2p, Q = 2q, N = 2n = PQ. (2.1)

Let y and z be the binary integers of the form y = ypyp−1 · · · y2y1, z = zqzq−1 · · · z2z1 with
yj , zk ∈ {0, 1}, respectively. Then, with respect to the basis |y〉 ⊗ |z〉 of the total system
H⊗p ⊗ H⊗q ∼= H⊗n, |φ〉 ∈ H⊗n is expressed as

|φ〉 =
P−1∑
y=0

Q−1∑
z=0

cyz|yz〉, cyz ∈ C. (2.2)

We identify H⊗p ⊗ H⊗q with C
P×Q, the set of P × Q complex matrices, through

|φ〉 �−→ C = (cyz) ∈ C
P×Q. (2.3)

The C
P×Q is endowed with the Hermitian inner product,

〈C1|C2〉 = tr
(
C1C

†
2

)
, C1, C2 ∈ C

P×Q. (2.4)

For the reason of the probability measure, the state space is defined to be

M = {C ∈ C
P×Q|〈C|C〉 = tr(CC†) = 1}. (2.5)

In sections 3 and 4, we will treat M as a Riemannian manifold in the real category, and the
real inner product

(C1|C2) := Re〈C1|C2〉 (2.6)

2



J. Phys. A: Math. Theor. 41 (2008) 105202 T Iwai et al

is used. The Riemannian metric is defined through the inner product (X1|X2) for tangent
vectors X1, X2 ∈ TC(M), where

TCM = {X ∈ C
P×Q|(C|X) = 0}. (2.7)

Further, the group G := U(P ) × U(Q) acts on M in the manner

C �−→ gCh�, (g, h) ∈ U(P ) × U(Q), (2.8)

where h� denotes the transpose of h ∈ U(Q). With respect to this action, the tangent space
TCM is decomposed into a direct sum of the vertical subspace VC and the horizontal subspace
HC ; TCM = VC ⊕ HC , where VC is defined to be the tangent space TCOC to the G-orbit OC

through C, and where HC = V ⊥
C , the orthogonal complement to VC . By definition, VC and

HC are put in the form

VC = {ξC + Cη�|ξ ∈ u(P ), η ∈ u(Q)}, (2.9)

HC = {X ∈ TCM|CX† − XC† = 0, C†X − X†C = 0}, (2.10)

where u(P ) and u(Q) are the Lie algebras of U(P ) and U(Q), respectively.
We note here that the matrix CC† is the partial trace of the density matrix ρ = |φ〉〈φ|

with respect to the latter q-qubit of H⊗p ⊗ H⊗q . In view of this, we may call C maximally
entangled, if all of eigenvalues of CC† are equal to one another, where P � Q is assumed.

If |φ〉 ∈ H⊗p ⊗ H⊗q is separable, |φ〉 is expressed as |ψ1〉 ⊗ |ψ2〉 with |ψ1〉 ∈ H⊗p

and |ψ2〉 ∈ H⊗q . Then, the corresponding matrix C is put in the form C = c1c
�
2 , where

c1 = (ck) ∈ C
P and c2 = (c′

j ) ∈ C
Q in correspondence with |ψ1〉 = ∑

ck|k〉 ∈ H⊗p and
|ψ2〉 = ∑

c′
j |j 〉 ∈ H⊗q , respectively. Hence, the C is of rank one. Conversely, if rankC = 1,

there exist vectors c1 ∈ C
P and c2 ∈ C

Q such that C = c1c
�
2 , so that the corresponding state

|φ〉 is separable.
In [2], a function defined below is adopted as a measure of entanglement,

F(C) = det(IP − CC†), IP : P × P identify matrix, (2.11)

which has the properties (i) F(C) = 0 if and only if C is separable and (ii) F(C) attains the
maximal value, ((P − 1)/P )P , if and only if C is maximally entangled. Further, F(C) is
invariant under the U(P ) × U(Q) action.

According to [2], we describe the sets of separable states and of maximally entangled
states, and the distance between them. If C is maximally entangled, one has CC† = 1

P
IP , so

that the set of maximally entangled states is described as

E :=
{
C ∈ C

P×Q|CC† = 1

P
IP

}
, (2.12)

which is identified with the Stiefel manifold of orthonormal P-frames in C
Q, VP (CQ) ∼=

U(Q)/U(Q − P). If C is separable, C is singularly decomposed into C = g[e1, 0]h†,
where e1 = [1, 0, . . . , 0]� ∈ C

P and (g, h) ∈ U(P ) × U(Q). Let g = [u1, . . . ,uP ] and
h = [v1, . . . ,vQ]. Then, C = u1v

†
1. Since u1v

†
1 = u1eiθ (v1eiθ )†, and since ‖u1‖ = 1 in

C
P and ‖v1‖ = 1 in C

Q, an equivalence relation is defined on the set S2P−1 × S2Q−1 through
(u1,v1) ∼ (u1eiθ ,v1eiθ ), so that the set of separable states is described as S2P−1 ×U(1) S

2Q−1,
which is a fiber bundle over S2P−1/U(1) ∼= CP P−1 with fiber S2Q−1.

Proposition 2.1 ([2]). The sets of maximally entangled states and of separable states with
respect to the isomorphism C

N ∼= C
P×Q are diffeomorphic with the Stiefel manifold VP (CQ)

of orthonormal P-frames in the space C
Q and with S2P−1 ×U(1) S2Q−1, a fiber bundle over

S2P−1/U(1) ∼= CP P−1 with fiber S2Q−1, respectively.
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Proposition 2.2 ([2]). The distance between the set, F−1(0), of the separable states, and the
level set F−1(k) with 0 � k � ((P − 1)/P )P is given by

arccos
√

1 − (P − 1)(x−(k))2, (2.13)

where x−(k) denotes the smaller one of the solutions to

k = (P − 1)x2(1 − x2)P−1. (2.14)

In particular, the distance between the set, F−1((P − 1)/P )P ), of maximally entangled states
and the set, F−1(0), of separable states is given by arccos P −1/2.

3. Maximally entangled states nearest to a separable state

We take a typical separable state A given by

A = 1√
N

⎡⎢⎣1 · · · 1 · · · 1
...

. . .
...

...

1 · · · 1 · · · 1

⎤⎥⎦ ∈ C
P×Q, (3.1)

which corresponds to a state |a〉 = 1√
N

∑ |i1i2 · · · in〉 and is used as an initial state in the
search algorithm. We know from the above proposition that the set of maximally entangled
states is distant from A by arccos P −1/2. We now wish to know which states in E are distant
from A by arccos P −1/2. The following theorem gives the answer to this question.

Theorem 3.1. The maximally entangled states �0 nearest to the separable state A are given
by

�0 = 1√
P

(A + HV †K†), (3.2)

where the matrices K and H are defined, respectively, by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− P−1√
(P−1)P

0 · · · 0

1√
(P−1)P

. . .
. . .

...

...
. . . − 2√

2·3 0

1√
(P−1)P

. . . 1√
2·3 − 1√

1·2
1√

(P−1)P

. . . 1√
2·3

1√
1·2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

P×(P−1), (3.3)

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Q−1√
(Q−1)Q

0 · · · 0

1√
(Q−1)Q

. . .
. . .

...

...
. . . − 2√

2·3 0

1√
(Q−1)Q

. . . 1√
2·3 − 1√

1·2
1√

(Q−1)Q

. . . 1√
2·3

1√
1·2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

Q×(Q−1), (3.4)

and where V ∈ C
(Q−1)×(P−1) is an arbitrary matrix satisfying

V †V = IP−1, (3.5)

which form a submanifold diffeomorphic with VP−1(C
Q−1) in E ∼= VP (CQ).
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Proof. The distance in the state space M ∼= S2N−1 is determined by using the length of
geodesic segments. Since the geodesics on S2N−1 are great circles with radius one, the
distance of two points (i.e., unit vectors) is equal to the angle between two unit vectors. Since
the angle can be evaluated by the inner product of two unit vectors, our task is now to solve
the problem

maximize (�|A),

subject to ��† = 1

P
IP ,

(3.6)

where (|) denotes the real inner product and where the constraint condition means that
� ∈ E . �

To solve the problem (3.6), we use the method of undetermined multipliers. Let H(P )

denote the set of P × P Hermitian matrices. Since the constraint ��† − IP /P = 0 is an
equation for the Hermitian matrix ��†, we take a Lagrange multiplier � in H(P ) to define
the Lagrangian form,

L(�,�) = (�|A) +

(
�

∣∣∣∣(��† − 1

P
IP

))
. (3.7)

Necessary conditions for L to be extremal at (�,�) are that � and � satisfies

A† + 2�†� = 0, (3.8a)

��† − 1

P
IP = 0. (3.8b)

From these equations together with their Hermitian conjugates, we obtain

�A† = − 2

P
�, �2 = P

4
AA† = 1

4
I, (3.9)

where

I =

⎡⎢⎣1 · · · 1
...

. . .
...

1 · · · 1

⎤⎥⎦ ∈ H(P ), (3.10)

so that the inner product (�|A) is expressed, in terms of �, as

(�|A) = − 2

P
tr(�). (3.11)

Hence, our problem is further reduced to the following:

minimize tr(�), (3.12a)

subject to �2 = 1

4
I. (3.12b)

Lemma 3.2. The solution to the minimization problem (3.12) is expressed as

� = − 1

2
√

P
I, (3.13)

where I is given in (3.10).

Proof. For the matrix in the right-hand side of (3.12b), there exists a unitary matrix U ∈ U(P )

such that
1

4
I = U diag

[
P

4
, 0, . . . , 0

]
U †. (3.14)

5
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On the other hand, the Hermitian matrix � is diagonalized by a unitary matrix V ∈ U(P ),

� = V diag[ω1, . . . , ωP ]V †, (3.15)

where the eigenvalues ω1, . . . , ωP of � are real valued. Then, equations (3.12b), (3.14) and
(3.15) are put together to give

diag
[
ω2

1, . . . , ω
2
P

] = P

4
(V †U)diag[1, 0, . . . , 0](V †U)†

= P

4
uu† = P

4
(ujuk), (3.16)

where u = [u1, . . . , uP ]� is the first column of the unitary matrix V †U and where ‖u‖ = 1.
Therefore, equation (3.16) implies that there exists m ∈ {1, . . . , P } such that

ωm = ±
√

P

2
, ωj = 0, j �= m, (3.17)

so that

tr(�) = tr(diag[ω1, . . . , ωP ]) = ±
√

P

2
. (3.18)

The minimum value of tr(�) is then −
√

P
2 , so that tr(�) = ωm = −

√
P

2 . Hence equation (3.15)
is brought into

� = −
√

P

2
vv†, (3.19)

where v is the mth column vector of V . Let v = (vj ). Then, the above equation and the
constraint (3.12b) are put together to show that vj = eiθ /

√
P , j = 1, . . . , P , so that � given

in equation (3.13) proves to be the only solution to the minimization problem (3.12). This
ends the proof of the lemma. �

We return to (3.8), which are now expressed as

A + 2�� = 0, � = − 1

2
√

P
I, ��† = 1

P
IP . (3.20)

We wish to find the matrix � in the form

� = sA + C, (3.21)

where s ∈ R and where C = (ck
) ∈ C
P×Q is orthogonal to A, (A|C) = 0, that is,

Re
P∑

k=1

Q∑

=1

ck
 = 0. (3.22)

Since �A = −
√

P
2 A, as is easily verified, equations (3.20) and (3.21) are put together to give

(1 − s
√

P)A + 2�C = 0. (3.23)

Written out componentwise, this equation provides
P∑

k=1

ck
 = 1√
Q

(1 − s
√

P), 
 = 1, . . . , Q. (3.24)

Hence, from equation (3.22), we obtain

s = 1√
P

,

P∑
k=1

ck
 = 0, 
 = 1, . . . ,Q. (3.25)

6
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The second equation in equation (3.25) implies that the vector h1 = 1√
P

[1, . . . , 1]� ∈ C
P is in

the kernel of C†. Note that the column vectors of the matrix H given in (3.3) are perpendicular
to h1. We set B = C†H ∈ C

Q×(P−1). Since HH † = IP − h1h
†
1, C

† can be put in the form

C† = BH †, B ∈ C
Q×(P−1). (3.26)

Thus, � turns out to take the form

� = 1√
P

A + HB†. (3.27)

We have a further look into B. We note that the matrix H satisfies

A†H = 0, H †H = IP−1, (3.28a)

HH † = IP − AA†. (3.28b)

Equations (3.8b) and (3.27) are put together and arranged by the use of (3.28) to provide

B†B = 1

P
IP−1, (3.29a)

AB = 0. (3.29b)

Equations (3.29) imply that the column vectors b1, . . . , bP−1 of B are of magnitude 1/
√

P and
form an orthogonal system in C

Q, and further are perpendicular to g1 = 1√
Q

[1, . . . , 1]� ∈ C
Q.

Hence, the matrix B can be expressed as

B = 1√
P

KV, (3.30)

where K is defined in equation (3.4) and where V is a (Q − 1) × (P − 1) matrix satisfying

V †V = IP−1. (3.31)

Consequently, the matrix � given in (3.27) is put in the form

�0 := 1√
P

A +
1√
P

HV †K†. (3.32)

Conversely, it is easy to verify that �0 given in equation (3.32) satisfies equation (3.8) on
account of �H = AK = 0,K†K = IQ−1 and (3.31). This ends the proof of the theorem.

In conclusion of this section, we remark that the distance between A and �0 is easy to
calculate and satisfy

arccos(A|�0) = arccos
1√
P

. (3.33)

4. Horizontal paths joining A and Φ0

We now describe a geodesic which joins A and �0 and is as long as the distance between A

and �0. Let

R0 =
√

P

P − 1
A − 1√

P − 1
�0. (4.1)

7
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Since R0 and �0 form an orthonormal two frame, the geodesic joining R0 and �0 is given by
and written out as

C(t) = cos tR0 + sin t�0

= cos(t − ψ)A +
1√

P − 1
sin(t − ψ)HV †K†, (4.2)

where

sin ψ = 1√
P

, cos ψ =
√

P − 1

P
. (4.3)

This curve passes A and �0 at t = ψ and t = π/2, respectively. Let

h = [h1,HV1] ∈ U(P ), g = [g1,KV2] ∈ U(Q), (4.4)

where h1 = 1√
P

[1, . . . , 1]� ∈ C
P , g1 = 1√

Q
[1, . . . , 1]� ∈ C

Q, V1 ∈ U(P − 1), V2 ∈
U(Q − 1), and where H and K are given in theorem 3.1. Then, the singular decomposition of
C(t) proves to take the form

C(t) = h[�0(t), 0]g†, (4.5)

where

�0(t) =
[

cos(t − ψ)
1√

P−1
sin(t − ψ)IP−1

]
∈ C

P×P , (4.6)

and where we have used the fact that h1g
†
1 = A and factorized V † into V † = [V1, 0]V †

2 . As is
easily verified, the curve C(t) taking the form (4.5) is horizontal:

CĊ† − ĊC† = C†Ċ − Ċ†C = 0. (4.7)

The length of the geodesic segment between t = ψ and t = π
2 is π

2 − ψ = arccos 1√
P

, which
is the same as the distance between A and �0.

Proposition 4.1. The length of the geodesic C(t) joining A and �0, which is given in (4.2),
realizes the distance between A and the set of maximally entangled states.

We here observe how the entanglement measure vary along curves between A and
maximally entangled states. As for the curve C(t), we obtain

F(C(t)) = det(IP − C(t)C(t)†) = (1 − cos2(t − ψ))

(
1 − 1

P − 1
sin2(t − ψ)

)P−1

, (4.8)

which takes minimum and maximum values at t = ψ and t = π/2, respectively, where
C(ψ) = A and C(π/2) = �0.

Now we take a typical maximally entangled state

W = 1√
P

[IP , 0] ∈ C
P×Q. (4.9)

Note that W is the state that any maximally entangled state C is transformed by a local unitary
transformation (g, h) ∈ U(P ) × U(Q), gCh� = W . We introduce a matrix R by

R =
√

Q

Q − 1
A −

√
1

Q − 1
W, Q �= 1. (4.10)

Note that W and R are orthogonal and that (A|W) = 1/
√

Q. Then, the geodesic joining R
and W is given by

(t) = cos tR + sin tW, (4.11)

8
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which passes A and W at t = χ and t = π/2, respectively, where

sin χ = 1√
Q

, cos χ =
√

Q − 1

Q
. (4.12)

In what follows, we calculate the entanglement measure F((t)) along (t). Note that
R is written out as

R = 1√
N − P

⎡⎢⎢⎢⎢⎣
0 1 · · · 1 1 · · · 1

1
. . .

. . .
...

... · · · ...

...
. . .

. . . 1
... · · · ...

1 · · · 1 0 1 · · · 1

⎤⎥⎥⎥⎥⎦ . (4.13)

With the explicit expression of W and R, we carry out a straightforward calculation to obtain

(t)(t)† =
(

cos2 t

N − P
− 2 sin t cos t√

P(N − P)
+

sin2 t

P

)
IP +

(
(Q − 2) cos2 t

N − P
+

2 sin t cos t√
P(N − P)

)
I,

(4.14)

where I is the matrix given in (3.10). I is diagonalized by the unitary matrix h ∈ U(P ) given
in (4.4),

h†Ih = diag[P, 0, . . . , 0]. (4.15)

On account of this, (t)(t)† is written out as

(t)(t)† = h diag
[
λ2

1(t), λ
2
2(t), . . . , λ

2
2(t)

]
h†, (4.16)

where λ2
1(t) and λ2

2(t) are given by

λ2
1(t) = cos2(t − χ) +

Q − P

P(Q − 1)
sin2(t − χ), (4.17a)

λ2
2(t) = Q

P(Q − 1)
sin2(t − χ), (4.17b)

respectively, and where χ is given in (4.12). Hence, we have

F((t)) = det(IP − (t)(t)†) = (
1 − λ2

1(t)
)(

1 − λ2
2(t)

)P−1
. (4.18)

For t = χ and t = π/2, F ((t)) takes minimum and maximum values, respectively.
While (t) is not a horizontal curve, we can bring it into a horizontal curve. Let

�(t) =
[
λ1(t)

λ2(t)IP−1

]
∈ C

P×P , (4.19)

where λ1(t) and λ2(t) are the non-negative functions determined by (4.17a) and (4.17b),
respectively. Using this matrix, we define a curve �(t) to be

�(t) = h[�(t), 0]g†, (4.20)

where h and g are given in (4.4). The �(t) is written out as

�(t) = λ1(t)A + λ2(t)HV †K†, (4.21)

where V † = [V1, 0]V †
2 with 0 ∈ C

P×(Q−P). As is easily seen, �(t) passes A and �0 at t = χ

and t = π/2, respectively, where �0 is the matrix defined in (3.2). Like (4.5), the curve (4.20)
is horizontal. Thus, the geodesic (t) joining A and W is transformed into the horizontal
curve �(t) joining A and �0. However, the �(t) is not shortest among those horizontal curves
joining A and �0. The shortest one is C(t) which we have already obtained.

9
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Since �(t)�(t)† = h�(t)2h†, the entanglement measures for �(t) are put in the form

F(�(t)) = det(IP − �(t)�(t)†) = (
1 − λ2

1(t)
)(

1 − λ2
2(t)

)P−1
, (4.22)

which takes indeed minimum and maximum values at A and �0, respectively.

5. A review of Grover’s algorithms

5.1. Grover’s original algorithm

We make a review of Grover’s quantum search algorithm [11]. Suppose we are given initial and
target states in C

N, |a〉 = 1√
N

[1, . . . , 1]� and |φ〉, respectively, where 〈φ|φ〉 = 1, 〈φ|a〉 �= 0.
In Grover’s search algorithm, the target state |φ〉 is usually chosen to be one of computational
basis vectors, but we have taken an arbitrary vector |φ〉. We now define unitary operators Ia

and Iφ to be

Ia := I − 2|a〉〈a|, (5.1a)

Iφ := I − 2|φ〉〈φ|, (5.1b)

respectively, and thereby a Grover operator G to be

G := −Ia ◦ Iφ, (5.2)

which generates a sequence |ak〉 = Gk|a〉. Defining a vector |r〉 to be

|r〉 := 1√
1 − |c|2

|a〉 − c√
1 − |c|2

|φ〉, c := 〈φ|a〉, (5.3)

one obtains an orthonormal frame {|r〉, |φ〉}, with respect to which the Grover sequence is
expressed as

Gk|a〉 = (
cos

(
k + 1

2

)
θ
)|r〉 +

(
e2ηi sin

(
k + 1

2

)
θ
)|φ〉, (5.4)

where we have introduced real variables η and θ through

e2ηi sin
θ

2
= c, cos

θ

2
=

√
1 − |c|2. (5.5)

5.2. Fixed-point algorithm

The original Grover’s algorithm has a problem of optimal stopping. If the operation is not
stopped, the sequence Gk|a〉 passes the target state. The fixed-point algorithm was invented
to make the sequence converge monotonically to a target state [12]. We now make a review of
the fixed-point algorithm with a bit of modification for our purpose. The initial and the target
states are the same as in Grover’s original algorithm. We define a series of unitary operators
Gk by

Gk := Rak
◦ Rφ, k = 1, 2, . . . , (5.6)

where Rak
, Rφ are the unitary operators given by

Rak
:= I − (1 − eνi)|ak〉〈ak|, ν = π

3
, (5.7a)

Rφ := I − (1 − eνi)|φ〉〈φ|, (5.7b)

10
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respectively. By iterative operations of Gk , we define a sequence |ak〉 to be

|ak+1〉 = Gk|ak〉, k = 1, 2, . . . , |a1〉 = |a〉. (5.8)

The sequence |ak〉 is known to converge to the target state |φ〉 with probability one. We
now make a brief review of the proof. Let

ck := 〈φ|ak〉, k = 1, 2, . . . , (5.9)

and introduce 0 < εk < 1 by

|ck|2 = 1 − εk. (5.10)

Then, one can show that εk+1 = ε3
k , so that

εk = ε3k−1

1 , k = 1, 2, . . . . (5.11)

Since |ε1| < 1, εk tends to zero as k → ∞. This and (5.10) are put together to imply that
|ck|2 → 1, which means that |ak〉 converges to |φ〉 within phase factors.

By using εk thus found, we can prove that

ck+1 = ckeνi(eνi + εk), ν = π

3
, (5.12)

from which ck turns out to be

ck+1 = ekνi(eνi + εk)(e
νi + εk−1) · · · (eνi + ε1)c1. (5.13)

This means that arg ck does not converge, while we have shown that |ck| → 1.
We now write out the matrix representation of Gk . We define |rk〉 to be

|rk〉 := 1√
1 − |ck|2

|ak〉 − ck√
1 − |ck|2

|φ〉, k = 1, 2, . . . . (5.14)

Then, the matrix representation G̃
(k)
k of Gk with respect to {|rk〉, |φ〉} proves to be

G̃
(k)
k = eνi

[
1 − (1 − e−νi)|ck|2 −ck(1 − eνi)

√
1 − |ck|2

ck(1 − e−νi)
√

1 − |ck|2 1 − (1 − eνi)|ck|2

]
. (5.15)

Now, a straightforward calculation shows that

|rk+1〉 = eνi|rk〉, k = 1, 2, . . . , (5.16)

which gives rise to the transformation between frames {|rk+1〉, |φ〉} and {|rk〉, |φ〉}. Then, we
obtain

Proposition 5.1. The kth unitary operator Gk in the fixed-point algorithm is represented, with
respect to the frame {|r1〉, |φ〉}, as

G̃k = eνi

[
1 − (1 − e−νi)|ck|2 −c̄k(1 − eνi) e(k−1)νi

√
1 − |ck|2

ck(1 − e−νi) e−(k−1)νi
√

1 − |ck|2 1 − (1 − eνi)|ck|2

]
. (5.17)

From (5.14) and (5.16), we can put the sequence |ak〉 in the explicit form

|ak〉 =
√

1 − |ck|2|rk〉 + ck|φ〉 = ε
1/2
k e(k−1)νi|r1〉 + ck|φ〉, (5.18)

where εk and ck are given in (5.11) and (5.13), respectively.

11
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6. Entanglement measurement

We look into how change occurs in the values of the entanglement measure along the sequences
generated by Grover’s original and the fixed-point algorithms. Let us be reminded of the fact
that the basis vector |r〉 in Grover’s original algorithm is the same as |r1〉 in the fixed-point
algorithm. Further, both algorithms share the same initial and target states. We can then deal
with the sequences generated by respective algorithms in parallel. Further, we may introduce
the same notation |ak〉 for both the sequences. In fact, the sequences generated by Grover’s
original algorithm and by the fixed-point algorithm are expressed as

|ak〉 = G|ak−1〉 = · · · = Gk−1|a1〉, (6.1)

|ak〉 = Gk−1|ak−1〉 = · · · = Gk−1Gk−2 · · · G1|a1〉, (6.2)

respectively.
On account of the isomorphism H⊗n ∼= C

P×Q, we carry the sequences |ak〉 in H⊗n to
those Ak in C

P×Q to evaluate the entanglement measure det
(
IP − AkA

†
k

)
. In the quantum

search algorithm, the target state is usually chosen to be one of computational basis vectors,
a separable state. Take the target state |t〉 as |t〉 = [0, . . . , 0, 1]�. We denote the matrices
corresponding to |a〉, |t〉 and |r〉 by A, T and R, respectively. Then, we have

A = 1√
N

⎡⎢⎢⎢⎣
1 · · · 1 1 · · · 1
...

. . .
...

...
...

1 · · · 1 1 · · · 1
1 · · · 1 1 · · · 1

⎤⎥⎥⎥⎦ , T =

⎡⎢⎢⎢⎣
0 · · · 0 0 · · · 0 0
...

. . .
...

...
...

...

0 · · · 0 0 · · · 0 0
0 · · · 0 0 · · · 0 1

⎤⎥⎥⎥⎦ , (6.3)

and

R = 1√
N − 1

⎡⎢⎢⎢⎣
1 · · · 1 1 · · · 1 1
...

. . .
...

...
...

...

1 · · · 1 1 · · · 1 1
1 · · · 1 1 · · · 1 0

⎤⎥⎥⎥⎦ , (6.4)

where we have used (5.3) with |φ〉 = |t〉 and c = (A|T ) = 1√
N

.
We denote the matrices corresponding to |ak〉 by Ak and put them in the form

Ak = αkR + βkT , αk, βk ∈ C. (6.5)

After calculating RR†, T R†, RT † and T T † in the matrix form, AkA
†
k proves to take the form

AkA
†
k =

⎡⎢⎢⎢⎣
ak · · · ak bk

...
. . .

...
...

ak · · · ak bk

b̄k · · · b̄k dk

⎤⎥⎥⎥⎦ , (6.6)

where

ak = Q

N − 1
|αk|2, bk = Q − 1

N − 1
|αk|2 +

1√
N − 1

αkβ̄k, dk = Q − 1

N − 1
|αk|2 + |βk|2.

(6.7)

The characteristic polynomial of AkA
†
k turns out to be given by

det
(
λIP − AkA

†
k

) = λP−1[λ2 − λ + (P − 1)(akdk − |bk|2)], (6.8)

12
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and the eigenvalues are expressed, in terms of ak, bk, dk given in (6.7), as

λ1 = 1
2

(
1 +

√
1 − 4(P − 1)(akdk − |bk|2)

)
,

λ2 = 1
2

(
1 −

√
1 − 4(P − 1)(akdk − |bk|2)

)
,

λ3 = 0((P − 2)-multiple).

(6.9)

The measure of entanglement F(Ak) along the sequence is then expressed as

F(Ak) = det
(
IP − AkA

†
k

) = (P − 1)(akdk − |bk|2). (6.10)

For the sequence Ak generated by Grover’s original algorithm, we have, from (5.4),

αk = cos
(
k − 1

2

)
θ, βk = sin

(
k − 1

2

)
θ, (6.11)

where

sin
θ

2
= 1√

N
. (6.12)

For the sequence Ak generated by the fixed-point algorithm, equation (5.18) provides

αk = e(k−1)νi
√

ε3k−1

1 , βk = ck, (6.13)

where ck is given in (5.13) along with

ε1 = 1 − 1

N
, c1 = 1√

N
. (6.14)

Substitution of (6.11) and (6.13) into (6.7) results in the explicit expression of ak and bk , the
entries of AkAk†, in the cases of original Grover’s algorithm and of the fixed-point algorithm,
respectively. Hence, in turn, one obtains the explicit expression of the eigenvalues (6.9) and
of the entanglement measure (6.10) in respective cases.

Figure 1 provides the graphs of eigenvalues (6.9) and of entanglement measure (6.10)
against the number of queries qk = 1

2 (3k − 1), where P = 210,Q = 220, N = 230.
We observe expectedly that as the difference between eigenvalues gets larger, the value

of entanglement measure becomes smaller. The entanglement measure suggests that the
sequence generated by the fixed-point algorithm converges to the target monotonically, if the
number of iterations is large enough. In contrast with this, the sequence generated by Grover’s
original algorithm oscillates. The fact that det

(
I − AkA

†
k

) �= 0 shows that the passing states
are entangled, while the initial and the target states are separable. Another measure was
proposed in [6], in which a figure similar to figure 1(a) was given.

7. A split Grover algorithm

As was observed in the previous section, the initial and the target states are separable, but
the sequences generated by both of the Grover algorithms are entangled. We wish to find
an algorithm which generates a sequence of separable states approaching the target separable
state. We first note that the initial and the target states are expressed, respectively, as

A = aP a†
Q, aP = 1√

P
[1, . . . , 1]� ∈ C

P , aQ = 1√
Q

[1, . . . , 1]� ∈ C
Q, (7.1)

T = eP e†
Q, eP = [0, . . . , 0, 1]� ∈ C

P , eQ = [0, . . . , 0, 1]� ∈ C
Q. (7.2)

According to the Grover algorithm, as was done in section 5, we define sequences ak ∈ C
P and

bk ∈ C
Q with initial states a1 = aP and b1 = aQ by setting ak = U

(P)
k−1aP and bk = U

(Q)
k−1aQ,

13
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Figure 1. Eigenvalues and the measure of entanglement along the sequence approaching a
separable state with P = 210,Q = 220 and N = 230.

(This figure is in colour only in the electronic version)

where Uk−1 = Gk−1 · · ·G1 or Uk−1 = Gk−1 according to whether the fixed point algorithm
or the original algorithm is concerned, and where the superscript (P ) or (Q) is attached to
Uk−1 according to whether the algorithm is performed in C

P or in C
Q. In the fixed-point

algorithm, the sequences ak and bk converge to the respective target states, eP and eQ, within
phase factors. Then, the sequence of matrices

Ak = akb
†
k ∈ C

P×Q (7.3)
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converge to the target state T within phase factors. Since the Ak are of rank one and invariant
under the U(1) action, (ak, bk) �→ (eiθak, eiθbk), on S2P−1 ×S2Q−1, the sequence (7.3) moves
in the set, S2P−1 ×U(1) S2Q−1, of separable states. We call the algorithm that generates the
sequence Ak a split Grover algorithm.

In conclusion of this section, we compute the distance between A and T with respect to a
naturally defined Riemannian metric on S2P−1 ×U(1) S

2Q−1. The product space S2P−1 ×S2Q−1

has a natural Riemannian metric, which we denote by ds2
P + ds2

Q, where ds2
P and ds2

Q denote
the canonical metrics on S2P−1 and S2Q−1, respectively. The metric projects to a metric
on S2P−1 ×U(1) S2Q−1, as it is invariant under the U(1) action; (u,v) �→ (eiθu, eiθv). Let
rP ∈ C

P and rQ ∈ C
Q be

rP =
√

P

P − 1
aP − 1√

P − 1
eP , (7.4)

rQ =
√

Q

Q − 1
aQ − 1√

Q − 1
eQ, (7.5)

respectively. Then, the geodesics joining rP and eP and joining rQ and eQ are given,
respectively, by

cP (tP ) = cos tP rP + sin tP eP , (7.6)

cQ(tQ) = cos tQrQ + sin tQeQ. (7.7)

The curve (cP (tP ), cQ(tQ)) becomes a geodesic in S2P−1 × S2Q−1, if the parameters tP and
tQ are adjusted. We take tP and tQ as functions of another parameter τ

tP (τ ) = 1

L

(
π

2
− θP

)
τ + θP , tQ(τ ) = 1

L

(
π

2
− θQ

)
τ + θQ, (7.8)

where θP and θQ are defined through sin θP = 1√
P

and sin θP = 1√
Q

, respectively, and where
L is a positive real number. Then, the curve segment (cP (tP ), cQ(tQ)) starting with (aP ,aQ)

at τ = 0 and ending with (eP ,eQ) at τ = L has the length, with respect to the metric
ds2

P + ds2
Q, given by∫ L

0

√∣∣∣∣dcP

dτ

∣∣∣∣2

+

∣∣∣∣dcQ

dτ

∣∣∣∣2

dτ =
√(

π

2
− θP

)2

+

(
π

2
− θQ

)2

. (7.9)

We here note that the curve (cP (tP ), cQ(tQ)) is horizontal in the sense that the tangent vector( dcP (tP )

dτ
,

dcQ(tQ)

dτ

)
to the curve is orthogonal to the vertical vector (icP (tP ), icQ(tQ)), a tangent

vector to the U(1) orbit through (cP (tP ), cQ(tQ)), with respect to the Riemannian metric
on S2P−1 × S2Q−1. Hence, the length (7.9) provides the distance between A = aP a†

P and
T = eP e†

P with respect to the metric on S2P−1 ×U(1) S2Q−1.

8. Concluding remarks

The distance between A and T is given by d(A, T ) = arccos 1√
N

, which is larger than

the distance d(A,W) = arccos 1√
Q

between A and W , and than the distance d(A,�0) =
arccos 1√

P
between A and �0. Put another way, the separable state T is much more distant

than the maximally entangled states W and �0. With respect to the Riemannian metric on
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the set of separable states, the distance dS(A, T ) between A and T, which is given by (7.9),
is still larger than or equal to d(A,W) and d(A,�0). From the viewpoint of Riemannian
geometry of the state space, this fact sounds strange. However, from the viewpoint of quantum
mechanics, the separable states would be easily accessible from the initial state A by means
of local unitary transformations by U(P ) × U(Q). This is because the group U(P ) × U(Q)

of smaller size is easier to treat than the group U(N) of full size. Hence, the above fact would
be acceptable.

The split Grover algorithm can be extended to be applicable in multipartite partitions. In
fact, each sequence generated by the Grover algorithm in each party is combined to form a
sequence in the total space.

A number of entanglement measures with respect to multi-partite partitions have been
proposed, some of which are, for example, the n-concurrence [7], polynomial invariants
[8], the Schmidt measure [9], the Q measure [6] and hyperdeterminants [10]. However, as
long as bipartite partition is concerned, our measure is in keeping with geometric study of
entanglement.

In conclusion, we make a comment on an extension of the entanglement measure. Though
we have considered only one bipartite partition, we may take several bipartite partitions into
account. Let |φ〉 = ∑

ci1···in |i1 · · · in〉, and let integers p and q be fixed with p + q = n

and p � q. Denote by K = (k1, k2, . . . , kp) the loci of p qubits in C
2 ⊗ · · · ⊗ C

2 with
k1 < k2 < · · · < kp. Let J = j1j2 · · · jp be a binary integer formed from coefficient’s indices
with respect to K, and L = 
1
2 · · · 
q a binary integer formed from coefficient’s indices with
respect to the loci other than K, where ja, 
b ∈ {0, 1}, a = 1, . . . , p, and b = 1, . . . , q. Then,
the coefficients of the state |φ〉 are mapped to a matrix C(K) ∈ C

P×Q,

(ci1i2···in ) �→ C(K) = (
C

(K)
JL

) ∈ C
P×Q. (8.1)

The p-particle density matrix is then written as

ρK = C(K)C(K)†. (8.2)

We may define an entanglement measure to be∏
K

det(IP − ρK), (8.3)

where K ranges over all bipartite partitions with p fixed. If (8.3) vanishes for |φ〉, there exists
a bipartite partition with respect to which |φ〉 is separable. It is to be noted that this measure is
invariant under the local unitary transformation U(2)×U(2)×· · ·×U(2). In particular, for a
three-qubit, one has (p, q) = (1, 2), and (8.3) reduces to det ρA det ρB det ρC , where A,B and
C are symbols attached to respective particles. For the GHZ state |φ〉 = 1√

2
(|001〉 + |111〉),

one has ρA = ρB = ρC = 1
2I2, so that det ρA det ρB det ρC = (1/4)3, which means that the

GHZ state is maximally entangled with respect to any bipartite partition. If we wish, we may
vary p and q under the condition p + q = n, p � q, and extend the measure (8.3) to

[n/2]∏
p=1

∏
K(p)

det(I − ρK(p)), (8.4)

where [n/2] denotes the integer part of n/2.
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